Z-Y-Z 分解
Theorem:
任意单比特门 \(\mathcal{U}\) (任意 \(2\times 2\) 酉矩阵)都可以分解为:
$\(
\mathcal{U} = e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta)
\)\(
其中 \)\alpha, \beta, \gamma, \delta \in \mathbb{R}$ 。
Proof:
我们知道
$$
\[\begin{align*}
R_y(\theta) & = \begin{pmatrix}
\cos{\theta \over 2} & -sin{\theta \over 2} \\
\sin{\theta \over 2} & \cos{\theta \over 2}
\end{pmatrix} \\
R_z(\theta) & = \begin{pmatrix}
e^{-i\frac{\theta}{2}} & 0 \\
0 & e^{i \frac{\theta}{2}}
\end{pmatrix}
\end{align*}\]
\[分别计算 $e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta) |0\rangle$ 和
$e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta) |1\rangle$\]
\[\begin{align*}
e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta) |0\rangle
& = e^{i\alpha} R_z(\beta) R_y(\gamma) e^{-i\frac{\delta}{2}} |0\rangle \\
& = e^{i(\alpha - \frac{\delta}{2})} R_z(\beta) \left( \cos{\gamma\over 2}|0\rangle + \sin{\gamma \over 2} |1\rangle \right) \\
& = e^{i(\alpha - \frac{\delta}{2})} \left( e^{-i\frac{\beta}{2}} \cos{\gamma\over 2}|0\rangle + e^{i\frac{\beta}{2}}\sin{\gamma \over 2} |1\rangle \right) \\
& = e^{i(\alpha - \frac{\beta}{2} - \frac{\delta}{2})} \cos{\gamma\over 2} |0\rangle + e^{i(\alpha + \frac{\beta}{2} - \frac{\delta}{2})} \sin{\gamma\over 2} |1\rangle
\end{align*}\]
\[\]
\[\begin{align*}
e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta) |1\rangle
& = e^{i\alpha} R_z(\beta) R_y(\gamma) e^{i\frac{\delta}{2}} |1\rangle \\
& = e^{i(\alpha + \frac{\delta}{2})} R_z(\beta) \left( -\sin{\gamma\over 2}|0\rangle + \cos{\gamma \over 2} |1\rangle \right) \\
& = e^{i(\alpha + \frac{\delta}{2})} \left( -e^{-i\frac{\beta}{2}} \sin{\gamma\over 2}|0\rangle + e^{i\frac{\beta}{2}}\cos{\gamma \over 2} |1\rangle \right) \\
& = -e^{i(\alpha - \frac{\beta}{2} + \frac{\delta}{2})} \sin{\gamma\over 2} |0\rangle + e^{i(\alpha + \frac{\beta}{2} + \frac{\delta}{2})} \cos{\gamma\over 2} |1\rangle
\end{align*}\]
\[因此 $e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta)$ 的矩阵表示如下:
\]
e^{i\alpha} R_z(\beta) R_y(\gamma) R_z(\delta) =
(2)\[\begin{pmatrix}
e^{i(\alpha - \frac{\beta}{2} - \frac{\delta}{2})} \cos{\gamma\over 2}
&
-e^{i(\alpha - \frac{\beta}{2} + \frac{\delta}{2})} \sin{\gamma\over 2}
\\
e^{i(\alpha + \frac{\beta}{2} - \frac{\delta}{2})} \sin{\gamma\over 2}
& e^{i(\alpha + \frac{\beta}{2} + \frac{\delta}{2})} \cos{\gamma\over 2}
\end{pmatrix}\]
$$
对于任意矩阵 \(\mathcal{U}\) ,我们可以考虑其作用效果:
$$
\[\begin{align*}
\mathcal{U}
& = |\psi\rangle \langle 0| + |\psi_\bot\rangle \langle 1|
\end{align*}\]
\[对于 $|\psi\rangle$ 和 $|\psi_\bot\rangle$
\]
\[\begin{align*}
|\psi\rangle
& = \mathcal{U} |0\rangle \\
& = a |0\rangle + b |1\rangle \quad \text{where }|a|^2 + |b|^2 = 1 \\
& = e^{i\phi_0} \cos{\gamma\over 2} |0\rangle + e^{i\phi_1} \sin{\gamma\over 2} |1\rangle
\end{align*}\]
\[因为 $\langle \psi | \psi_\bot \rangle = 0$ ,不妨设
\]
\[\begin{align*}
|\psi_\bot \rangle
& = \mathcal{U} |1\rangle \\
& = -e^{i\phi_2} \sin{\gamma\over 2} |0\rangle + e^{i\phi_3} \cos{\gamma\over 2} |1\rangle
\end{align*}\]
\[矩阵 $\mathcal{U}$ 可以写作
\]
\mathcal{U} = \begin{pmatrix}
e^{\phi_0}\cos{\gamma\over 2} & -e^{\phi_2}\sin{\gamma\over 2} \
e^{\phi_1}\sin{\gamma\over 2} & e^{\phi_3}\cos{\gamma\over 2}
\end{pmatrix}
$$
现在我们需要确定 \(\alpha, \beta, \gamma, \delta\),只需要令
$\(
\begin{cases}
\phi_0 = \alpha - \frac{\beta}{2} - \frac{\delta}{2} \\
\phi_1 = \alpha + \frac{\beta}{2} - \frac{\delta}{2} \\
\phi_2 = \alpha - \frac{\beta}{2} + \frac{\delta}{2} \\
\phi_3 = \alpha + \frac{\beta}{2} + \frac{\delta}{2}
\end{cases}
\)$
解得:
$\(
\begin{cases}
\alpha = \frac{\phi_1 + \phi_2}{2} \\
\beta = \phi_1 - \phi_0 \\
\delta = \phi_2 - \phi_0
\end{cases}
\)$
其他的分解
除了Z-Y-Z分解,还有X-Y-X分解等等,一般地有下面定理:
Theorem:
如果 \(\vec{n}\) 和 \(\vec{m}\) 不平行,那么对于任意单量子比特门 \(\mathcal{U}\),存在如下的分解:
$\(
\mathcal{U} = e^{i\alpha}R_{\vec{n}}(\beta_1) R_{\vec{m}}(\gamma_1)
R_{\vec{n}}(\beta_2) R_{\vec{m}}(\gamma_2) \cdots
\)$
ABC分解
对于一个任意的单比特幺正门,可以有以下分解:
$\(
U=e^{i\alpha}AXBXC
\)\(
其中\)A\(,\)B\(和\)C\(是旋转算符的乘积,\)X\(是泡利\)X\(算符,并且有\)ABC=I\(。这个分解对于构建两比特控制\)U\(门起到重要作用。问题的关键在于该如何找到\)A, B, C\(的显式形式,并且满足\)ABC=I$。
证明
考虑如下trick:
$\(
R_{y}\left(\frac{\gamma}{2}\right) X^{c} R_{y}\left(\frac{-\gamma}{2}\right) X^{c}
\)\(
(i) \)c=1\(,我们有\)R_y(\frac{\gamma}{2})XR_y(\frac{-\gamma}{2})X=R_y(\gamma)$
(ii) \(c=0\),我们有\(R_y(\frac{\gamma}{2})R_y(\frac{-\gamma}{2})=I\)
这就是一个基本的控制\(R_y\)门。现在如果我们考虑如下形式:
$\(
R_{z}(\beta) R_{y}\left(\frac{\gamma}{2}\right) \cdot X^{c} R_{y}\left(\frac{-\gamma}{2}\right) X^{c}
\)\(
(i) 当\)c=1\(时上式回归到\)R_z(\beta)R_y(\gamma)\(,这还缺少一个因子\)R_z(\delta)$。
(ii) 当\(c=0\),我们有\(R_z(\beta)\)。
因此我们需要为这些情况构造\(R_z\)门。让我们考虑这额外的部分,
$\(
X^xR_z(a)X^cR_z(b)
\)\(
(i) \)c=1\(,上式变为\)R_z(-a+b)$;
(ii) \(c=0\),上式变为\(R_z(a+b)\)。
因此我们只要令\(\delta=-a+b\)和\(-\beta=a+b\),亦即\(a=-(\beta+\delta)/2\)和\(b=(\delta-\beta)/2\)。综合以上内容,如下形式应当能给出正确解答:
$\(
R_{z}(\beta) R_{y}\left(\frac{\gamma}{2}\right) \cdot X^{c} R_{y}\left(\frac{-\gamma}{2}\right) X^{c} \cdot X^{c} R_{z}(a) X^{c} R_{z}(b)=R_{z}(\beta) R_{y}\left(\frac{\gamma}{2}\right) X^{c} R_{y}\left(\frac{-\gamma}{2}\right) R_{z}(a) X^{c} R_{z}(b)
\)$
即
$\(
\begin{aligned}
A & =R_{z}(\beta) R_{y}\left(\frac{\gamma}{2}\right)\\
B & =R_{y}\left(\frac{-\gamma}{2}\right) R_{z}(a)\\
C & =R_z(b)
\end{aligned}
\)$
关于单比特门的讨论到这里就结束了,接下来我们将关注双比特门,即\(4\times 4\)的幺正矩阵。